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Abstract. We study the phase behavior of solutions consisting of positive and negative ions of valence
z to which a third ionic species of valence Z > z is added. Using a discretized Debye-Hückel theory,
we analyze the phase behavior of such systems for different values of the ratio Z̄ ≡ Z/z. We find, for
Z̄ > 1.934, a three-phase coexistence region and, for Z̄ > 2, a closed (reentrant) coexistence loop at
high temperatures. We characterize the behavior of these ternary ionic mixtures as function of charge
asymmetry and temperature, and show the complete phase diagrams for the experimentally relevant cases
of Z̄ = 2 and Z̄ = 3, corresponding to addition of divalent and trivalent ions to monovalent ionic fluids,
respectively.

PACS. 61.20.Qg Structure of associated liquids: electrolytes, molten salts, etc. –
52.25.Kn Thermodynamics of plasmas – 05.20.-y Classical statistical mechanics

1 Introduction

In many areas of Physics, Chemistry, and Biology elec-
trostatic forces play an important role in determining sys-
tem properties. This becomes particularly true when deal-
ing with ionic fluids, i.e., fluids consisting of dissociated
cations and anions, since in most cases the Coulomb inter-
action is the dominant interaction between the particles.
Ionic mixtures have been intensely debated not only be-
cause of their interesting behavior (for recent reviews, see
[1–5]), but also because a better understanding of such
systems is the first step towards a more rigorous theoret-
ical treatment of more complicated systems like charged
colloids and polyelectrolytes.

It has been shown experimentally that ionic solutions
exhibit liquid-liquid phase coexistence, terminated by a
critical point, similar to ordinary (nonionic) fluids [6].
Theoretically, such a demixing transition has been ratio-
nalized in terms of an effective attraction between the ions
[7,8] which is due to charge screening, first introduced
by Debye and Hückel [9]. For simple inorganic salts, such
as NaCl, this critical point occurs at temperatures above
3000 K [6] and thus precludes precise measurements. More
detailed experiments became available with the advent of
large organic ions, which show critical points at tempera-
tures of 414 K [10] and, more recently, at 317 K [11].

The aforementioned examples correspond to binary
mixtures of cations and anions of the same valence. In
this article we will look at three-component ionic mix-
tures, i.e., we will consider solutions of z:z salts to which
a third component with valence Z is added (keeping total
charge neutrality). This situation often occurs in real sys-
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tems, deserving for this reason a closer look. For instance,
in the cellular medium several ionic species with differ-
ent valences (like Cl−, Na+ and Ca2+) are simultaneously
present. As another example, the presence of charged im-
purities can change dramatically the behavior of charge-
stabilized colloidal suspensions [12]. With this in mind,
adding a third component to an ionic fluid is the natu-
ral extension of previous work and, as we will show, the
resulting phase behavior is quite rich: it is our hope that
this will motivate experiments testing our predictions.

The theoretical tools that are usually employed to
treat ionic fluids are the Debye-Hückel theory [9] (or
some modified version of it) and liquid state theory with
some special approximation [13] like the hypernetted chain
(HNC) or the mean-spherical approximation (MSA). For
instance, Caccamo [14] and Caccamo and Malescio [15]
studied ternary mixtures with Z̄ ≡ Z/z = 2, the former
using MSA (for low-density mixtures), while the latter
made a comparison between MSA, HNC and Monte Carlo
results (at high salt densities). Also, three-component
mixtures with Z̄ = 2 and 3 have been studied by Kenkare
et al. [16], where MSA was used to compute the Coulom-
bic contribution to the free energy. Their phase diagrams,
although presented in a constant-pressure ensemble (in
contrast to our phase diagrams, where we do not con-
strain the osmotic pressure to constant values), seem to
be generally in accordance with our results [17,18].

In general, the comparison between computer simula-
tions and liquid state theory shows that the latter leads
to quite accurate predictions for the thermodynamic vari-
ables of the system. The same cannot be said about the
Debye-Hückel theory (cf. Tab. 1): although it should be
exact in the limit of vanishing densities, it quickly deviates
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Table 1. Comparison between (minus) the excess internal en-
ergy per particle from Monte Carlo simulations (MC), hyper-
netted chain (HNC), mean spherical approximation (MSA),
Debye-Hückel limiting law (DH) and equation (6) (φ+ = a3c+,
as defined in Sect. 2). In the first part of the table (“bi-
nary”) the comparison is done for a simple 1:1 electrolyte with
T ∗ = 0.59, where the data for MC, HNC and MSA are taken
from Table II of reference [25]. In the second part of the table
(“ternary”), the same comparison is done for a three compo-
nent mixture with Z̄ = 2, T ∗ = 0.294 and φ = φ+; the data
for HNC and MSA are taken from Table I of reference [14].

φ+ MC HNC MSA DH Eq. (6)

binary

4.2×10−4 0.1029 0.1014 0.0992 0.1120 0.1090

4.8×10−3 0.2739 0.2714 0.2675 0.3780 0.3438

1.9×10−2 0.4341 0.4295 0.4264 0.7651 0.6276

4.6×10−2 0.5516 0.5447 0.5405 1.1736 0.8610

ternary

2.1×10−3 — 1.520 1.301 2.327 1.913

from the results obtained by computer simulations as one
increases the salt density. However, if one is interested in
low-density systems, Debye-Hückel has the advantage of
offering a very simple free energy that, although not very
accurate, can still be used to study the phase behavior
of ionic systems without considerable numerical work (in
contrast to most approximations used in liquid state the-
ory). Besides, Debye-Hückel has been shown [19,20] to be
a Gaussian theory that can be improved, with the help of
field-theoretic methods, through a systematic expansion of
the free energy in cumulants of a fluctuating field (which
can be related to the electrostatic potential). For these
reasons, we will use here the free energy derived from the
Debye-Hückel theory to describe our system.

Our article is presented as follows: in Section 2 we
briefly introduce the theoretical background of our work,
in Section 3 we present the resulting phase diagrams for
various three-component systems and fully characterize
their phase behavior as a function of Z̄ and temperature
and finally Section 4 contains some concluding remarks.

2 Theoretical background

Let us assume a symmetric ionic system with cations and
anions of valence z to which a third ionic species of va-
lence Z is added. Let us also assume that the ions interact
only via the Coulomb force, or that any solvophobic inter-
action between the ions are weak when compared to the
Coulomb interaction. In this case, following what has been
derived in reference [19], the Debye-Hückel contribution to
the bulk free energy per volume is

fDH = −
∫

dq
(2π)3

[
κ2

2q2
− 1

2
ln
(

1 +
κ2

q2

)]
, (1)

where the electrostatic self-energy is subtracted and the
momentum integral goes over a cube of length 2π/a. This

accounts for the lattice (with spacing a), implementing in
an approximate way the ionic hard cores. The screening
length κ−1 is defined by

κ2 = 4π`B(z2c+ + z2c− + Z2c), (2)

where the concentrations of the positive and negative ions
of valence z are denoted by c+ and c−, and the concentra-
tion of the third component (with valence Z) is denoted
by c. The Bjerrum length `B ≡ e2/(4πεkBT ) (in SI units)
is the distance at which the electrostatic energy between
two elementary charges equals the thermal energy kBT .

Since the integrand in equation (1) is isotropic, we dis-
tort the integration volume to a sphere and obtain after a
straightforward integration

fDH = − κ3

6π2
arctan

[ π
aκ

]
− κ2

12πa
+

π

12a3
ln
[
1 +

a2κ2

π2

]
.

(3)

In the limit a → 0 this reduces to fDH ' −κ3/12π,
which is the well-known Debye-Hückel limiting law. The
full (Helmholtz) free energy density contains also the ideal
entropy of mixing and reads

f = c ln c+ c+ ln c+ + c− ln c− + fDH. (4)

Global charge neutrality implies that Zc + zc+ = zc−,
where, without loss of generality, the third component of
valence Z is assumed to be positively charged. This allows
the elimination of one of the concentrations from the free
energy in equation (4): in the following, we choose to elim-
inate c−. For representing our results, we introduce the
usual rescaled temperature T ∗ ≡ a/`Bz

2 and the volume
fractions φ+ ≡ a3c+ and φ ≡ a3c (notice that the usual
definition of volume fraction — normally represented as
η — is related to our definition through φ = 6η/π).

If one of the three species is absent, the system reduces
to a two-component system, which has been studied (using
the same free energy) in reference [19]. If φ = 0, we obtain
the lower limiting critical temperature at T ∗LLC = 0.1776
with a critical density of positive ions of φ+

LLC = 0.0209;
if φ+ = 0, we obtain the upper limiting critical temper-
ature at T ∗ULC = 0.1776Z̄ and φULC = 0.0418/(1 + Z̄).
Clearly, since Z̄ > 1, we have T ∗ULC > T ∗LLC. These tem-
peratures will be used as “guidelines” in the presentation
of the phase behavior of three-component systems.

In order to obtain the phase diagrams, we calculate
the chemical potentials µ and µ+ from the free energy
equation (4) by taking derivatives with respect to c and
c+, respectively. We also calculate the osmotic pressure p,
which can be easily shown to be p = −f + cµ+ c+µ

+ (in
units of kBT ). We look for instabilities in the free energy
through the sign of the determinant of the (symmetric)
matrix

J =


∂2f

∂c2
∂2f

∂c∂c+
∂2f

∂c+∂c

∂2f

∂c2+

 (5)
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Fig. 1. Phase diagrams at constant reduced temperature
T ∗ ≡ a/`Bz2 for a three-component system with a valence ra-
tio Z̄ = 1.8 — representative of systems with Z̄ = Z/z < 1.934

— as function of eµ and eµ
+

(the fugacities of Z-valent ions
and of positive z-valent ions, respectively) and as function of
φ ≡ a3c and φ+ ≡ a3c+ (the volume fractions of Z-valent
ions and of positive z-valent ions). Filled circles denote criti-
cal points. Plots: (a) T ∗ ≡ a/`Bz2 = 0.2500 (representative of
the temperature range T ∗LLC < T ∗ < T ∗ULC); (b) T ∗ = 0.1754
(representative for T ∗ < T ∗LLC).

in the plane (c, c+) (or equivalently in the plane (φ, φ+)) at
fixed values of T ∗. The global convexity of the free energy
implies that detJ should be always positive: when this
is not verified, one is in a region where phase separation
occurs. The coexisting phases are then found through the
Maxwell construction [21], i.e., one has to find the c and
c+ in each of the coexisting phases that lead to values of µ,
µ+ and p that are same for all phases in coexistence. This
procedure yields the phase diagrams that we now present.

3 Phase diagrams

In Figure 1 we present the phase behavior for Z̄ = 1.8,
representative of small charge ratios Z̄ < 1.934. For
T ∗ > T ∗ULC = 0.3196 no phase separation occurs. In Fig-
ure 1a we show, to the left, the phase diagram in fugaci-
ties (which are defined as the exponential of the chemical
potentials) and, to the right, the phase diagram in vol-
ume fractions for T ∗ = 0.2500, representative of the range
T ∗LLC < T ∗ < T ∗ULC. There is one critical point at the
terminus of a phase coexistence line which emanates from
the axis defined by φ+ = 0 (or eµ

+
= 0). At T ∗ = T ∗LLC

this critical point hits the axis φ = 0 (or eµ = 0) at φ+
LLC,

and for lower temperatures there is single coexistence line
connecting the axes φ+ = 0 and φ = 0. This is demon-
strated in Figure 1b, where we show a phase diagram for
T ∗ = 0.1754.
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Fig. 2. Phase diagrams at constant T ∗ ≡ a/`Bz
2 for Z̄ = 2.

The notation is the same as in Figure 1. Shaded areas in the
volume fraction representation denote three phase coexistence
zones. Plots: (a) T ∗ = 0.2070 (T ∗UCEP < T ∗ < T ∗ULC); (b)
T ∗ = 0.1800 (T ∗LCEP < T ∗ < T ∗UCEP) (only shown close to the
three phase coexistence zone); (c) T ∗ = 0.1786 (T ∗LLC < T ∗ <
T ∗LCEP); (d) T ∗ = 0.1429 (T ∗ < T ∗LLC).

The behavior is dramatically altered for larger charge
asymmetry, viz. Z̄ > 1.934. One important difference in
the phase topology is that such systems always have two
critical end-points, one at temperature T ∗UCEP (upper crit-
ical end-point) and another one at T ∗LCEP (lower critical
end-point). In the temperature range between these two
critical end-points the systems exhibit three phase coex-
istence.

In Figure 2 we present the phase behavior for Z̄ = 2
corresponding, for instance, to a mixture of divalent
cations with monovalent co- and counter-ions. For high
temperatures, T ∗ > T ∗ULC = 0.3552 no phase separation
occurs. For the temperature range T ∗UCEP < T ∗ < T ∗ULC
there is a single critical point, as demonstrated in Fig-
ure 2a for T ∗ = 0.2070; the phase diagram is simi-
lar to the one shown in Figure 1a. The upper critical
end-point is located at T ∗UCEP = 0.1808, below which



64 The European Physical Journal D

1.8 1.9 2 2.1 2.2 2.3

0.178

0.180

0.182

T *

Z

T *
LLC

T *
LCEP

T *
UCEP

DCEP
(a)

1.5 2 2.5 3 3.5 4

0.2

0.4

0.6

0.8

1.0

T *

T *
CMAX

T *
ULC

T *
LLC

T*
LCEP

Z

DCEP

0
0

(b)

Fig. 3. (a) Plot of the upper critical end-point temperature
T ∗UCEP (broken line), the lower critical end-point temperature
T ∗LCEP (dotted-broken line), and the lower limiting critical tem-
perature T ∗LLC (solid line) as a function of the valence ratio Z̄ in
the vicinity of the double critical end-point (DCEP). (b) Plot
of the lower and upper limiting critical temperature, the max-
imal critical temperature (T ∗CMAX) and the lower critical end-
point temperature as a function of Z̄; notice the widening of
the three phase zone and the growth of T ∗CMAX as Z̄ increases.

a second critical point exists. The resulting phase behav-
ior for T ∗LCEP < T ∗ < T ∗UCEP is similar to Figure 2b,
which depicts the phase diagram for T ∗ = 0.1800, and
where we see two phase coexistence lines, each termi-
nating at a critical point and merging at a triple point.
The region around this triple point is highlighted at the
phase diagram in volume fractions (Fig. 2b, right). At
T ∗ = T ∗LCEP = 0.1796 one of the critical lines present
for T ∗LCEP < T ∗ < T ∗UCEP terminates at the lower criti-
cal end-point. For T ∗LLC < T ∗ < T ∗LCEP we are thus left
again with a single critical point; a representative phase
diagram is shown in Figure 2c for T ∗ = 0.1786. Finally,
for T ∗ < T ∗LLC = 0.1776, no critical point is observed;
Figure 2d shows such a phase diagram for T ∗ = 0.1429,
which is similar to the one in Figure 1b.

The complete phase behavior is summarized in Fig-
ure 3, where we plot the various critical temperatures as
a function of the valence ratio Z̄. In Figure 3a we show,
in the vicinity of Z̄ = 2, the upper critical end-point tem-
perature T ∗UCEP (broken line), the lower critical end-point
temperature T ∗LCEP (dotted-broken line), and the lower
limiting critical temperature T ∗LLC (solid line). The two
lines of critical end-points meet at a double critical end-
point at Z̄ = 1.934, below which no triple point occurs.
On a larger scale (Fig. 3b) it becomes clear that the triple
phase temperature range widens as Z̄ increases (note that
T ∗UCEP and the double critical end-point cannot be distin-
guished from T ∗LLC at this scale). We also plot the maxi-
mal temperature at which a critical point occurs, T ∗CMAX,
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Fig. 4. Phase diagrams at constant T ∗ ≡ a/`Bz
2 for Z̄ = 3.

The notation is the same as in Figures 1 and 2. Plots: (a) T ∗ =
0.5747 (T ∗ULC < T ∗ < T ∗CMAX); (b) T ∗ = 0.5155 (T ∗UCEP <
T ∗ < T ∗ULC); (c) T ∗ = 0.1775663 (T ∗LLC < T ∗ < T ∗UCEP) (in
volume fraction the three phase coexistence is represented by a
dashed line); (d) T ∗ = 0.1667 (T ∗LCEP < T ∗ < T ∗LLC); (e) T ∗ =
0.1000 (T ∗ < T ∗LCEP).

which for Z̄ > 2 satisfies T ∗CMAX > T ∗ULC. This leads to
closed coexistence loops, as is demonstrated in the follow-
ing.

In Figure 4 we show the phase behavior for Z̄ = 3.
In Figure 4a we plot the phase diagram for T ∗ = 0.5747,
which is below the maximal critical temperature T ∗CMAX =
0.5771 and above the upper limiting critical temperature
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T ∗ULC = 0.5328. Notice the presence of two critical points
bounding a closed coexistence loop. For T ∗UCEP < T ∗ <
T ∗ULC we find a phase topology with a single critical point,
as depicted in Figure 4b for T ∗ = 0.5155. In this system
the upper critical end-point occurs at a temperature very
close to the lower limit critical temperature (this is already
clear in Fig. 3); more precisely, T ∗LLC = 0.1775656 and
T ∗UCEP = T ∗LLC + 1.0 × 10−6. In Figure 4c, where T ∗ =
T ∗LLC + 0.7 × 10−6 (T ∗LLC < T ∗ < T ∗UCEP), we observe a
triple point and two critical points. Since the lower critical
end-point occurs at a lower temperature than the lower
limiting critical point (cf. Fig. 3), we obtain in the range
T ∗LCEP < T ∗ < T ∗LLC one critical point and a triple point,
as shown in Figure 4d for T ∗ = 0.1667. Finally, for T ∗ <
T ∗LCEP = 0.1163, all critical points have disappeared and
a coexistence line connects the two phase diagram axes,
as shown in Figure 4e for T ∗ = 0.1000.

4 Conclusion

For small valence ratios (Z̄ ≡ Z/z < 1.934) we have
shown that the the two critical points obtained for the
limiting cases (i.e., one of the two positively charged
species is absent) are joined by a continuous critical line.
For larger valence ratios (Z̄ > 1.934) we have obtained
more complicated phase diagrams, with a line of triple
points bounded by critical end-points and closed coex-
istence rings at T > T ∗ULC for Z̄ > 2. We have also
made a global analysis of three-component ionic mixtures,
where their phase behavior is characterized as a function
of charge asymmetry (up to Z̄ ∼ 5) and temperature.

Denoting by T ∗LLC the lower limiting critical tempera-
ture of the symmetric ionic system, we have shown that
this triple line extends, for Z̄ = 2, over a temperature
window of 1.012T ∗LLC < T ∗ < 1.018T ∗LLC and, for Z̄ = 3,
over 0.66T ∗LLC < T ∗ . T ∗LLC. This means that for a 1:1
organic salt with a critical point at T ' 400 K this tem-
perature window would have a 2.4 K width when adding
divalent ions and a 136 K width when adding trivalent
ions. The triple line should in principle be observable with
a suitable choice of mono-, di- and trivalent organic ions.
However, one should be careful when examining the num-
bers presented here. Although the Debye-Hückel theory
successfully predicts for ionic systems the existence of a
liquid-fluid critical point and the high asymmetry of their
phase diagrams, it has some limitations, as we now dis-
cuss.

One problem is the fact that the theory is quite sensi-
tive to the way that the hard cores are treated: we chose to
include them through a lattice of spacing a. Alternatively,
one could add to the free energy equation (4) an extra
term to account for the hard-core repulsion (for instance a
free-volume approximation term) and get the electrostatic
contribution fDH either by integrating equation (1) with-
out the cut-off (which results immediately in the Debye-
Hückel limiting law) or by doing a “charging process” after
solving of the linearized Poisson-Boltzmann equation with
the appropriate boundary conditions for the hard cores [9,
22,23]. These methods yield similar phase diagrams, but

with different values of temperature and density for the
critical point. The use of a lattice is the most convenient
for the field-theoretic treatment, although it is certainly
not the best way [24]. This, as well as some simplifications
done during the calculations (like performing the integral
in Eq. (1) in the sphere instead of the initial cube of size
2π/a) are expected to affect the final results.

The direct comparison of the internal energy per par-
ticle that follows from equation (4), viz.

u ≡ Uex

NkBT
= − a3κ3

8πφ+
arctan

( π
aκ

)
, (6)

with results from other approaches is shown in Table 1
(in Eq. (6), κ is the inverse screening length defined in
Eq. (2), a is the lattice spacing, corresponding to the ionic
diameter, and φ+ is the volume fraction of the positive
z = 1 ions). In the first part of this table (“binary”), we
compare the values of u from Monte Carlo simulations,
HNC, MSA [25] and Debye-Hückel limiting law (DH) for
a simple 1:1 ionic mixture (where φ = 0, i.e., the Z-valent
ions are not present). Although our results are better than
the pure DH results, it is clear that our theory needs im-
provement at higher volume fractions. In the second part
of Table 1 (“ternary”), the same comparison is done for
a three-component mixture with Z̄ = 2 with results ob-
tained by Caccamo [14] (notice that the value of φ+ is
in the region where our phase diagrams are shown). This
shows that our theory underestimates the value of the in-
ternal energy of the system, which indicates that, beyond
the problem with the hard cores, a more refined free en-
ergy is needed in order to capture correctly all features
of the ionic fluids [26]. This idea is reinforced by the dis-
crepancy between the critical parameters for a 1:1 salt
obtained through MC simulations [27] (which lie in the
range T ∗C = 0.049–0.070 and φ+

C = 0.013–0.040) with the
ones obtained with the free energy used here (T ∗C = 0.178
and φ+

C = 0.021).
With this in mind, one should regard the results we

obtained as being of “zeroth-order.” As previously men-
tioned, the free energy used here is the lowest-order result
following a systematic expansion. Changes in the phase
behavior are expected as one takes into account higher
order terms in the expansion, but as shown in reference
[19] for Z:z mixtures, the inclusion of terms up to the
eighth cumulant in the fluctuating field affects the phase
diagrams appreciably only for values of Z̄ ≡ Z/z & 5. For
this reason, and in spite of the limitations of the Debye-
Hückel theory, we assume that the topology of the phase
diagrams shown here are correct.
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